
Hardware Support for Software
Debugging

Mohammad Amin Alipour
Benjamin Depew

Department of Computer Science
Michigan Technological University

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 2011 2. REPORT TYPE

3. DATES COVERED
 00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
Hardware Support for Software Debugging

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Michigan Technological University,Department of Computer
Science,Houghton,MI,49931-1295

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Presented at the 23rd Systems and Software Technology Conference (SSTC), 16-19 May 2011, Salt Lake
City, UT. Sponsored in part by the USAF. U.S. Government or Federal Rights License

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

30

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Outline
• Motivation

• Economy of Software Defects
• Debugging Concurrency Issues
• Flaws of Software Debugging

• Hardware-Based Software Debugging
• Post-mortem Analysis: Replay Architectures

• Flight Data Recorder
• Rerun

• Runtime Verification: Hardware Monitors
• iWatcher
• Log Based Architecture

• Concurrency Debugging - ReEnact
• Conclusions

Cost of Software Defects

• Financial Costs
• In a study by NIST in 2002 it was found that software bugs caused

59.5 billion dollars damage to the US economy

• Other Costs
• Patriot Missile Defense System Failure

• Feb 25, 1991
• Caused killing of 28 American Soldiers

• Radiation Treatment Overdose
• June 1985 – January 1987
• 6 patients overdosed with up to 100x normal radiation levels
• Speculated to be because of software bugs

Concurrency Defects
• Moore's Law Breaking Down

• Processor manufactures switching to adding more processing cores
on the processor die

• Leveraging multi-core processors by using multithreaded
applications introduces more potential runtime bugs in the
software:
• Data Race
• Deadlock
• Starvation/Livelock

• Notoriously difficult to debug the conditions listed above

Software Debugging - Common Techniques

• Static
• Analysis of source code
• Methods such as: model checking, program analysis
• Not practical for hardware support

• Dynamic
• Monitor executing programs dynamically
• Instrument program and check for violations
• Practical for hardware support

Software Instrumentation Example

sub $0xff, %edx
counter++;
cmp %esi, %edx
counter++;
jle <L1>
counter++;
mov $0x1, %edi
counter++;
add $0x10, %eax

Software Instrumentation inserts
instructions within a program to
trace the state that the program is
in at a given point in time.

• Static:
• Done at the source code level
• Example: Assert statements

• Dynamic:
• Done at object code level
• Examples: Valgrind, PIN

From: Cohn "Pin Tutorial"

Limitations of Software-Based Dynamic
Verification
• Performance: Instrumentation can cause runtimes to be

longer by an order of magnitude

• Accuracy: Unable to catch certain software defects such as
memory alignment

int x, *p;
/* assume invariant: x == 1 */
...
p = foo(); /* causes a bug: p points to x incorrectly */
p = 5; / line A: unintended corruption of x */
...
InvariantCheck(x == 1); /* line B */
z = Array[x];
…

Performance Slowdown

Luk et al "Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation" PlDI'05.

1600

~ 1400 -<I)
E 1200 (j)

0

t-
t: 1000 0
~

::::s
0 800 <I)

>< w
"0
<I)

600
-~
(13 400
E
'-
0 200 z

('") D Valgrind D Dynamo RIO • Pin/IA32
<X)
L()
......

0
N
N

~" rt><:-
~ .~0 ,

~ .. ~
~

[i'/7tffiftjpmflfiiJJ
----------------------------~createt!he Future

Hardware Based Software Debugging
• Hardware is faster

• Runtime overhead of using hardware techniques for
dynamic software verification is less than that of software
techniques

• The tradeoff is hardware will become more complex and
possibly more expensive

• Details of actual execution that could inaccessible at the
software level
• Compiler Optimizations
• Software Libraries
• Can see what is happening at the machine level to

expose these issues

Post-mortem Analysis
• Debugging requires understanding of the cause of the

failure, one common way is reproduction of failure from
logging a program's actions

• In sequential programs, reproduction of failure is a relatively
straight forward process
• Check-pointing statements of interest
• Trace through checkpoints using debuggers

• In concurrent programs, reproduction of failure is difficult
• Non-determinism of thread execution leads to many possible

program execution states
• Need to preserve the order in which threads execute relative to

each other to reproduce the runtime which lead to the failure

Flight Data Recorder (FDR)

• Modeled after the principles of an actual flight data recorder,
FDR constantly records information during a program’s
execution

• Assumes sequentially consistent memory model for the
base hardware

• Maintains a record of a set number of previous instructions

• If a trigger occurs while recording, a log file including a core
dump and the record FDR has been keeping is output to a
file for replay after program execution

FDR architecture

Xu, M., Bodik, R., and Hill, M. A” flight data recorder” for enabling full-system multiprocessor
deterministic replay. ACM SIGARCH Computer Architecture News 31, 2 (2003), 122–135.

FDR Evaluation

Using Wisconsin workload simulations on a simulated machine
four 1Ghz processors and a log interval of 1 billion instructions:

• Speed
• Runtime of the workloads was found to increase less than 2%

• Hardware Cost
• 7% overhead of system memory used for logging the longest

intervals in this system, assuming 512MB memory per processor
• At least 4KB additional memory needed on the die of the processor

for this setup

Rerun
• Based off the approach that FDR uses, also relies on

sequential consistency memory model.

• Instead of recording a set interval of instructions, Rerun
keeps track of the time a thread executes without memory
access conflicts with other threads

• "Episodic Memory Race Recording”
• Determines the length of an episode by ending a current episode

and beginning a new one when threads access the same memory
locations

• Orders the episodes of multiple threads to produce a faithful
deterministic replay of the whole program, which is done using a
Lamport Scalar Clock

Rerun Architecture

Hower and Hill "Rerun: Exploiting episodes for lightweight memory race recording". In
ISCA08: Proceedings of the 35th International Symposium on Computer Architecture
(2008), pp. 265–276.

Rerun Evaluation

• Speed
• Speed overhead of using FDR not noted in the paper, given the

small log file sizes and minimal hardware costs, should be minimal

• Hardware Cost
• 166 bytes per core

• Other notes
• Other main focus was to keep log file sizes minimal for scalability to

large numbers of cores, in which it was noted that Rerun was on
par with FDR’s log file size

Runtime Monitoring

• Efficient run-time monitoring of programs can be exploited
to
• Automatically detect invalid software states during runtime
• Potentially recover from invalid software states to improve reliability

• Some security flaws and safety violations can be reported
and in some cases prevented by keeping track of the
execution of the program
• Taint Analysis
• Buffer Overflow

iWatcher Description

• Hardware architecture support for memory monitoring

• It allows programmers to associate a monitoring function to
a portion of memory

• It can be used to detect and prevent memory related faults
such as buffer overflow, memory leaks and stack smashing

• Leverages Thread Level Speculation (TLS)
• To support breakpoints and rollbacks when a trigger occurs
• To execute monitoring code in parallel with the program code

iWatcher Usage
• The iWatcher system provides system calls as the interface

for a programmer to monitor memory locations
• iWatcherOn() method specifies the memory addresses to be

monitored, types of accesses (read, write or both), monitoring
function to trigger in the occurrence of such event

• iWatcherOff() disables monitoring of specific memory addresses

• Programmers can insert these system calls into the source
code wherever monitoring is needed

• iWatcher will invoke the specified monitoring function upon
a triggering access to the watched memory

iWatcher Architecture

Zhou, P., Qin, F., Liu, W., Zhou, Y., and Torrellas, J. "iWatcher: Efficient architectural support for software
debugging". ACM SIGARCH Computer Architecture News 32, 2 (2004), 224 – 235.

iWatcher Evaluation

• Speed
• 4-80% runtime overhead on experimental data
• 66-175% runtime overhead on heavy dynamic load monitoring

• Hardware Cost
• 2 bits per word in L1 and L2 caches
• 2040 bytes for RWT and VWT tables

• Other notes
• Other main focus was to keep log file sizes minimal for scalability to

large numbers of cores

Log Based Architecture (LBA)

• The motivation is that when a program and its monitor run
on the same shared resources like register files
and processors, they compete for resources which slows
down the program execution

• Based on decoupling program and its monitor by leveraging
idle cores in multi-core processors to handle the monitoring
of an application

• Information to monitor is passed from the core running the
application to the the core monitoring the application using a
log buffer with compression

LBA

Courtesy: Chen,et al "Log-based architectures for general-purpose monitoring of deployed code". In ASID ’06.

Application Lifeguard

Operating System

Core 1 Core 2
Capture Log Buffer dispatch ...

(e.g. L2 cache}
r-..... ,

Compress • ~ decompres s

li'iftBlfUJrmftBih
---------------------=-cr~atetbe Future

LBA Evaluation
• Speed

• The experiments show 4 to 19 times speedup comparing to a
comparable software-only technique, Valgrind

• Hardware Cost
• It requires twice the number of cores necessary to run the

application without instrumentation in order to function correctly

• Variety of Lifeguard Functionality
• AddrCheck
• TaintCheck
• LockSet

• Lifeguards can be toggled on or off during runtime

Concurrency Debugging - ReEnact
• Leverages modified Thread-Level Speculation (TLS)

hardware

• Create partial orderings of threads in a multithreaded
program using logical vector clocks

• Using these orderings, ReEnact is able to detect and often
repair data race conditions in a multithreaded program

• Experiments were done with four processors, one thread per
processor

• Slowdown during non-bug detected runs was only 5.8%

Conclusions
• There is current architecture support for limited hardware

monitoring
• Currently up to four hardware watch-points
• x64 architecture supports additional addressing for debug registers,

but currently not implemented in hardware

• All hardware debugging methods observed require
architecture modifications to current architectures in order to
function, therefore are tested through simulations

Conclusions
• In order for new hardware debugging practices to be

leveraged in industry, current architecture support will need
to be expanded

• With the growing need for debugging multithreaded
applications on multi-core processors, will there be enough
demand to justify the cost of increasing architecture support
for hardware debugging?

Questions?

References
• Zhou, P., Qin, F., Liu, W., Zhou, Y., and Torrellas, J. "iWatcher: Efficient architectural

support for software debugging". ACM SIGARCH Computer Architecture News 32, 2
(2004), 224 – 235.

• Hower and Hill "Rerun: Exploiting episodes for lightweight memory race recording". In
ISCA08: Proceedings of the 35th International Symposium on Computer Architecture
(2008), pp. 265–276.

• Xu, M., Bodik, R., and Hill, M. A. "Flight data recorder for enabling full-system
multiprocessor deterministic replay". ACM SIGARCH Computer Architecture News 31,
2 (2003), 122–135.

• Chen, et al "Log-based architectures for general-purpose monitoring of deployed
code". In ASID ’06.

• Prvulovic, M.; Torrellas, J. "ReEnact: using thread-level speculation mechanisms
to debug data races in multithreaded codes”. 30th Annual International
Symposium on Computer Architecture Proceedings 2003.

• Luk, et al "Pin: Building Customized Program Analysis Tools with Dynamic
Instrumentation" PLDI'05.

Acronyms

• LBA: Log Based Architecture
• NIST: National Institute of Standards and Technology
• FDR: Flight Data Recorder
• TLS: Thread Level Speculation
• EEMR: Episodic Memory Race Recording
• RWT: Range Watch Table
• VWT: Victim WatchFlag Table
• HW: Hardware
• MTS: Maximum Time Stamp
• DMA: Direct Memory Access
• CPU: Central Processing Unit

	Hardware Support for Software Debugging
	Outline
	Cost of Software Defects
	Concurrency Defects
	Software Debugging - Common Techniques
	Software Instrumentation Example
	Limitations of Software-Based Dynamic Verification
	Performance Slowdown
	Hardware Based Software Debugging
	Post-mortem Analysis
	Flight Data Recorder (FDR)
	FDR architecture
	FDR Evaluation
	Rerun
	Rerun Architecture
	Rerun Evaluation
	Runtime Monitoring
	iWatcher Description
	iWatcher Usage�
	iWatcher Architecture
	iWatcher Evaluation
	Log Based Architecture (LBA)�
	LBA
	LBA Evaluation�
	Concurrency Debugging - ReEnact
	Conclusions
	Conclusions
	Questions?
	References
	Acronyms

